(Binäre flüssige Mischungen XI.)

Von

H. Tschamler, F. Wettig und E. Richter.

Aus dem I. Chemischen Laboratorium der Universität Wien.

Mit 10 Abbildungen.

(Eingelangt am 12. Febr. 1949. Vorgelegt in der Sitzung am 24. Febr. 1949.)

Chlorex kann nicht nur, wie bereits bekannt, als selektives Lösungsmittel zur Trennung der Gruppe: Paraffin- und Naphthenkohlenwasserstoffe von den Benzolkohlenwasserstoffen oder von Olefinen verwendet werden, sondern auch, wie bereits W. Trautvetter (Dissertation Wien, 1941) gezeigt hat, für die Trennung der Paraffine von den Naphthenen. Über die Chlorex-Naphthensysteme haben wir in Arbeit II¹ und V² berichtet. In dieser Arbeit soll nun das Lösungsverhalten typischer Chlorex-Paraffinsysteme, gleichzeitig auch der Einfluß der Kettenverzweigung studiert werden. Diese Systeme bieten auch die interessante Möglichkeit, bei 20° C — das heißt bei eben noch vollständiger gegenseitiger Löslichkeit — das Verhalten der Mischungen unmittelbar oberhalb der KLT [diese liegen nach W. Trautvetter für n-Heptan bei 15,5°, für i-Oktan (2,2,4-Trimethylpentan) bei 17,5° und für n-Oktan bei 19,1° C] zu übersehen. Aus diesem besonderen Grunde wurde auch die Temperaturabhängigkeit der Volumeffekte, der molekularen Oberflächenspannungen und Viskositäten bestimmt.

I. Meßmethodik.

 $\varDelta H$ und c_p wurden mit dem in Arbeit X³ beschriebenen Mischungskalorimeter für kleine Mengen gemessen.

¹ H. Tschamler, Mh. Chem. 79, 223 (1948).

² H. Tschamler und R. Reiberger, Mh. Chem. 79, 394 (1948).

³ H. Tschamler und E. Richter, Mh. Chem. 80, 510 (1949).

⁴ H. Tschamler, Mh. Chem. 79, 162 (1948).

H. Tschamler, F. Wettig und E. Richter: Die Mischungen von Chlorex. 573

Die Messungen der Dichten, Brechungszahlen, Dielektrizitätskonstanten, Oberflächenspannungen, Viskositäten und die Aufnahme der Abkühlungskurven erfolgten, wie in Arbeit I^4 und V^2 ausführlich beschrieben.

II. Reinigung und physikalische Konstanten der verwendeten Reinstoffe.

Chlorex: Die Reinigung erfolgte wie in Arbeit I^4 (physikalische Konstanten siehe Tabelle 1).

n-Oktan und *i-Oktan*: Die Kw. wurden über Na getrocknet und in einer 20-cm-Kolonne mit *Greiner-Friedrichs* Füllkörpern fraktioniert destilliert (physikalische Konstanten siehe Tabelle 1).

Wie bei allen von uns verwendeten Stoffen wurde der horizontale Verlauf der Erstarrungskurve [vgl. *H. Tschamler*, Mh. Chem. 78, 303 (1948)] als Reinheitskriterium verwendet.

	Chlorex	n-Oktan	i-Oktan
Mol - Gow	142.08	114 99	114 99
Sdp	142,38 178.6°	114,22 125.9°	99.4° C
Schmp	$-46,7^{\circ}$	—56,8°	—107,0° C
c_p^{25} · · · · · · · · · · · ·	0,387	0,536	$0,485~{ m cal/g}$
\hat{d}_{20}^{20}	1,2198	0,7026	0,6917
$d^{\overline{35}}$	1,2026	0,6909	0,6795
d^{50}	1,1850	0,6786	0,6669
$n_{\rm D}^{20}$	1,45743	1,39763	1,39150
ε^{20} ($\lambda = 300 \mathrm{m}$)	20,47	1,93	1,91
γ^{20}		21,96	18,80 dyn/cm
γ ⁵⁰ · · · · · · · · · · · · · · · · · · ·	30,14	20,41	17,59
η^{20}	2,369	0,539	0.497 cP.
η^{35}	1,729	0,450	0,418
η^{50}	1,329	0,379	0,354

Tabelle 1. Die physikalischen Konstanten der Reinstoffe.

III. Versuchsergebnisse und deren Deutung.

Aus Platzersparungsgründen wird bezüglich der einzelnen Versuchsergebnisse auf die Dissertationen von F. Wettig (Wien, 1949) und E. Richter (Wien, 1949) verwiesen, die im I. Chemischen Universitätslaboratorium und in der Bibliothek der Österr. Akademie der Wissenschaften einzusehen sind.

a) Die Mischungswärmen.

1. Chlorex-n-Paraffine.

Vorläufige Messungen der Mischungswärmen der Systeme aus Chlorex mit n-Hexan, n-Heptan und n-Oktan bei 20°C wurden bereits von E. Schramke⁵ durchgeführt. Wir haben für die Systeme Chlorex—n-Heptan

⁵ Diplomarbeit, Wien, 1941.

und n-Oktan ΔH bei 25°C gemessen, wobei wir die Meßpunkte für die jeweils verdünnten Lösungen besonders dicht legten.

Abb. 1 enthält die Meßpunkte, Tabelle 2 die für runde Molenbrüche x_{Chl} aus Abb. 1 entnommenen ΔH -Werte.

Tabelle 2. Die Mischungswärmen $\varDelta H$ der untersuchten Systeme bei 25° C.

Chlores mit	Molenbruch x_{Chlorex}								
emorex mit	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
n-Heptan n-Oktan i-Oktan	$225 \\ 243 \\ 210$	370 395 350	$473 \\ 495 \\ 440$	 477	 	 455	$\begin{array}{r} 438 \\ 470 \\ 406 \end{array}$	347 378 320	$205 \\ 220 \\ 190$

Im gesamten von uns untersuchten Konzentrationsbereich ist die Mischungswärme des n-Oktansystems stärker *endotherm* als die des n-Heptansystems (im Mittel um 7%). Daß die ΔH -Kurven im mittleren

Abb. 1. Die Mischungswärmen der untersuchten Systeme bei 25°C.

Abb. 2. $\varDelta T_{\rm eXP}$ der Mischungswärmen des Chlorex-n-Oktansystems bei 25°C und Entmischungskurve desselben Systems.

Konzentrationsbereich nicht aufgenommen wurden, hat beim n-Heptansystem seine Ursache darin, daß $\Delta T_{\rm exp}$ größer als der Meßbereich unseres *Beckmann*-Thermometers war, und beim n-Oktansystem in der durch die starke Abkühlung bedingten Unterschreitung der KLT (Trübung der Mischung!), wie dies aus Abb. 2 eindeutig hervorgeht.

574

2. Chlorex—i-Oktan.

Das i-Oktan besitzt wegen seiner Verzweigungen ein wesentlich kompakteres Molekül als das isomere n-Oktan. Auch *Chlorex* dürfte eine im Vergleich zu einer normalen Kette kompaktere Molekülgestalt besitzen (vgl. Arbeit V², S. 397 und 402). Vielleicht ist deshalb ΔH für *Chlorex*—i-Oktan weniger endotherm als für *Chlorex*—n-Oktan (im Mittel um 15% geringer).

b) Die Molwärmen der Mischungen und die Temperaturabhängigkeit der Mischungswärmen.

Tabelle 3. Die spezifischen Wärmen c_{y}^{25} der untersuchten Systeme.

Oblazar mit	Molenbruch x_{Chlorex}										
Chiorex mit	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
n-Heptan	0,522	0,500	0,482	0,466				0,415	0,404	0,395	0,387
n-Oktan	0,536	0,516	0,497	0,480				0,429	0,416	0,406	0,391
i-Oktan	0,485	0,469	0,452	0,437	0,423	0,411	0,402	0,399	0,392	0,388	0,387

Sämtliche ΔC_p -Werte der n-Paraffinsysteme sind *negativ*, und zwar beim n-Heptansystem bis zu — 1,3% und beim n-Oktansystem bis zu — 1,8% (geschätzt für $x_{Chl} \simeq 0.5$) vom additiv berechneten C_p , was eine weitere Zunahme des endothermen ΔH -Wertes mit *fallender* Temperatur bedingt, völlig im Einklang mit der 6 bis 10° unterhalb 25° C liegenden KLT dieser Systeme.

Beim i-Oktansystem ist ΔC_p noch viel stärker *negativ* ($\Delta C_{p \text{ (max)}} \simeq \simeq -4.5\%$). Der bei 25°C im Vergleich zu den n-Paraffinsystemen schwächer endotherme Charakter wird also offenbar durch die größere Temperaturabhängigkeit von ΔH ausgeglichen, so daß die KLT aller drei Systeme einander sehr nahe liegen.

c) Die Volumeffekte der Mischungen.

1. Chlorex—n-Oktan.

Nach Abb. 3 tritt hier bei 20° C (also eben noch im homogenen Mischungsgebiet!) eine gerade noch meßbare, sehr schwache *Dilatation* auf, die bis 35° noch fast ebenso schwach bleibt, bei 50° aber bereits stark ausgeprägt ist.

2. Chlorex—i-Oktan.

Überraschenderweise finden wir bei diesem System — trotz der hohen endothermen Mischungswärme — eine Volumskontraktion. Diese ist aber wiederum bei 20° (also noch sehr nahe der KLT) sehr gering, ebenso noch bei 35°, wird aber mit steigender Temperatur bemerkenswert groß (siehe Abb. 3).

Diese Befunde haben den gemeinsamen Zug, daß der Absolutwert von ΔV zwischen 50 und 35° stark abnimmt, bei weiterer Annäherung an die KLT aber fast konstant bleibt. Eine Andeutung von anomalem Verhalten der Größe ΔV nahe der KLT wurde schon früher (Arbeit II⁴, S. 228) beim Vergleich der Systeme von *Chlorex* mit Cyclohexan und Methylcyclohexan bemerkt. Auf Anomalien des ΔV nahe der KLT deuten auch die Dichtemessungen von J. Wellm⁶ am System Anilin— Cyclohexan hin, die für 32°C (KLT: 30,5°C) und für 60°C einen vollständig verschiedenen Kurventypus des ΔV als f(x) zeigen. Da Messungen von ΔV für die homogenen Gebiete unterhalb der KLT unseres Wissens nicht vorliegen, ist zur Zeit eine Diskussion dieser eigenartigen

Abb. 3. *AV*-Werte der Systeme *Chlorex*—n-Oktan (_____) und *Chlorex*—i-Oktan (____) bei 20°, 35° und 50° C.

Verhältnisse noch nicht möglich. Ganz allgemein scheint ΔV und sein Temperaturgang, insbesondere nahe der KLT, für das Studium der inneren Struktur von Lösungen aufschlußreicher sein zu können, als man es gemeinhin annimmt.

d) Die Molrefraktionen der Mischungen.

Bei beiden Systemen sind die Molrefraktionen streng *additiv*. Mit Hilfe der bekannten Abhängigkeit der Refraktionsäqui-

valente von λ und ihrer Grenzwerte für $\lambda \to \infty$ haben wir die Meßgrößen $R_{\rm D}^{20}$ von *Chlorex* auf R_{∞}^{20} korrigiert, um damit die Elektronenpolarisation $P_{\rm E\,(Chl)}$ für die folgende Abschätzung des Dipolmomentes von *Chlorex* zu erhalten. Es ergaben sich $P_{\rm E\,(Chl)} = 31,21$ ccm (in n-Oktan) und 31,03 ccm (in i-Oktan).

Tabelle 4 20°C de Chlorex-	. DK bei s Systems —n-Oktan.	Tabelle 5. 20°C de Chlorex-	DK bei es Systems —i-Oktan.
x_{Chl}	$\varepsilon \ (\lambda = 300 \mathrm{m})$	$x_{ m Chl}$	$\varepsilon \ (\lambda = 300 \text{ m})$
0,000	1,93	0,000	1,91
0,048	2,15	0,069	2,26
0,146	2,71	0,320	4,16
0,511	6,41	0,535	7,02
0,851	14,79	0,723	11,23
0,952	18,50	0,927	17,25
1,000	20,48	1,000	20,45

e) Die Molpolarisationen der Mischungen und das Dipolmoment von Chlorex.

⁶ Z. physik. Chem., Abt. B 28, 121 (1935).

Die Molpolarisationskurven der beiden untersuchten Systeme sind überadditiv.

Da n-Oktan und i-Oktan dipollose Flüssigkeiten sind, kann man 1. aus den P_{Chl} -x-Kurven auf den Zustand der gelösten *Chlorex*moleküle schließen und 2. aus dem Grenzwert P_{Chl} für $x_{\text{Chl}} \rightarrow O$ das Dipolmoment des *Chlorex*-Einzelmoleküls abschätzen.

Ad 1. Abb. 4 zeigt, daß P_{Chl} mit wachsendem x_{Chl} abnimmt, was auf eine Dipolassoziation mit teilweiser Kompensation der Einzelmomente

hindeutet. Der Verlauf der P_{Chl} -Kurve in n-Oktan und auch der Grenzwert $P_{\text{Chl}} = 163 \text{ ccm}$ für $x_{\text{Chl}} \rightarrow O$ sind ähnlich wie die bereits in anderen, hauptsächlich in gesättigten dipollosen Lösungsmitteln gefundenen (vgl. Arbeit V², S. 401). In i-Oktan ist der Grenzwert wesentlich höher und nähert sich mit 177 ccm mehr den Werten in Benzol (180 ccm), bzw. Styrol (175 ccm).

Ad 2. In der Gleichung

$$x_{\rm Chl} \rightarrow o P_{\rm Chl} = P_E + P_A + P_O$$

sind, wenn für P_A in grober Näherung 15% von P_E genommen wird, alle Werte außer P_O bekannt, so daß aus P_O für das Dipolmoment des *Chlorex*-Einzelmoleküls bei 20°C folgende Werte abgeschätzt werden können:

Lösungsmittel	μ (Debye)
n-Oktan i-Oktan	$\begin{array}{c} 2,47\\ 2,60\end{array}$

Für diese Werte gilt das gleiche wie das oben für die Grenzwerte $(P_{\text{Chl}})_{x \to 0}$ Gesagte.

f) Die molekularen Oberflächenspannungen der Mischungen. Bezüglich der Größen E und ΔE vgl. Arbeit V², S. 401 bis 405. Die E-Werte der Reinstoffe in Abhängigkeit von der Temperatur betragen:

Reinstoff	20°C	35°C	50°C
Chlorex	$902,6\ 654,5\ 565,8$	873,8 613,9 536,0	833,3 erg 576,5

Abb. 5 zeigt die — entsprechend dem stark endothermen Verhalten — ungewöhnlich großen negativen ΔE -Werte; das für 20°C ermittelte

Abb. 6. Spezifische Viskositätskurven der Reinstoffe.

 $\Delta E_{\rm max} \simeq -24,2\%$ bei $x_{\rm Chl} = 0,800$ dürfte einen Maximalwert für dieses System darstellen. Mit steigender Temperatur wird die gegenseitige Löslichkeit besser, dementsprechend werden auch die $\Delta E_{\rm max}$ -Werte geringer (35°: -23,1% bei $x_{\rm Chl} \simeq 0,780$ und bei 50°: -19,2% bei $x_{\rm Chl} \simeq 0,740$), wie dies Abb. 5 sehr anschaulich wiedergibt.

Einen auch in seiner Größenordnung ähnlichen Verlauf der ΔE -Kurven finden wir beim System *Chlorex*—i-Oktan.

g) Die Viskosität der Reinstoffe und der Mischungen.

Die Nissanschen spezifischen Viskositätskurven (VK) der Reinstoffe in Abb. 6 (vgl. Abb. 5 in Arbeit V², S. 407) zeigen, daß i-Oktan und *Chlorex* in den *Neigungen* der VK, die für die Molekülgestalt charakteristisch sind, sich wesentlich ähnlicher sind als n-Oktan und *Chlorex*. Dies kann für die bessere Mischbarkeit (niedrigere KLT) des *Chlorex* mit i-Oktan von Bedeutung sein.

Eine Auswertung der η -x-Kurven der Mischungen nach Nissan wird erst möglich sein, wenn die T_S -Werte der einzelnen Mischungen gemessen sind. Vorerst stellen wir nur fest, daß der Krümmungsgrad der logarithmischen Viskositätskurven keine Besonderheiten zeigt, das heißt, nahe bei der KLT ist $\Delta \lg \eta$ praktisch ebenso groß wie bei 50°.

h) Die Zustandsdiagramme.

Wir wollen vorausschicken, daß eine Kristallisation in den Chlorex-

578

reichen Mischungen — wie in reinem Chlorex — nur durch Impfung zu erzwingen war.

Als "Entmischungspunkte" wurden jene Temperaturen festgehalten, bei denen die gesamten Mischungen bei starker Durchrührung gleichmäßig getrübt bleiben.

1. Chlorex—n-Oktan.

Abb. 7. lg η -x-Kurven des Systems Chlorex –n-Oktan bei 20°, 35° und 50° C.

Abb. 8. lg η -x-Kurven des Systems Chlorex—i-Oktan bei 20°, 35° und 50°C.

0			
$x_{ m Chl}$	Erstarrungs- punkt	Entmischungs- punkt	
		°C	
	1		
0,000	-57,1		
0,011	-57,3	-57,5	
0,020	-54.5	-57,5	
0,023		-57,5	·
0,027			-45.6
0.034			40.6
0.048			-31.6
0.070	-48.7		-22.2
0.098			13.1
0.134			- 2.3
0.272			13.9
0.352			17.7
0.511			19.7
0.665			18.6
0.769			14.3
0.851			3.4
0.912	48.6		-10.4
0.935			-21.6
0.952	-48.3		-30.1
0.979	48.2		
0.987	47.7		
1.000	-47.0		

Tabelle 6. Das Zustandsdiagramm des Systems Chlorex-n-Oktan.

Wie Abb. 9 zeigt, weist das Zustandsdiagramm zwischen $+19.7^{\circ}$ und — 48.6° eine fast über den gesamten Konzentrationsbereich Zone beschränkter Mischbarkeit auf. Die KLT laufende liegt bei 19,7° C (W. Trautvetter fand: 19,1° C). Das Eutektikum liegt bei -57.5° C und $x_{\rm Chl} \simeq 0.017$, der Dreiphasenpunkt (Chl)_{fest} mit den zwei flüssigen Phasen bei $-48,6^{\circ}$ C und $x_{\rm Chl} \simeq 0.972$. C +20,0 Aus den Grenztangenten der Erstarrungskurven lassen sich 0,0 +30,0 C 0,0 50.0 - 200 -500 - 100/

Chlorex—n-Oktan.

bb. 10. Das Zustandsdiagramm Chlorex—i-Oktan,

1.0

die molaren Gefrierpunktserniedrigungen E_0'' und daraus die molaren Schmelzwärmen L_F der Reinstoffe berechnen:

Reinstoff	T_F (°K)	F 0''	L_E (cal/Mol)
Chlorex	226,2	7,5	1940
n-Oktan	216,1	2,1	5140

Der für *Chlorex* errechnete L_{F} -Wert stimmt mit den bereits von uns gefundenen sehr gut überein (vgl. Arbeit I, II und III) und auch L_{F} des n-Oktans paßt gut zu den bekannten Literaturwerten (4900 bis 5100 cal).

2. Chlorex—i-Oktan.

Das Diagramm ähnelt sehr dem des n-Oktansystems;² die KLT liegt bei $+ 18,2^{\circ}$ C (*W. Trautvetter* fand: 17,5° C), also um 1,5° tiefer als beim n-Oktansystem. Das Eutektikum konnte wegen seiner zu geringen

Entfernung vom Schmelzpunkt des reinen i-Oktans nicht mehr aufgenommen werden.

Für die Schmelzwärme des Chlorex berechnen wir:

 $L_F \simeq 2200 \text{ cal/Mol.}$

Die beiden Zustandsdiagramme erlauben eine umfassende theoretische Auswertung, über die demnächst berichtet werden wird.

Tabelle	7.	Das	Zus	standsdia-		
gramm	des	Syste	ms	Chlorex-		
i-Öktan.						

x_{Chl}	Erstarrungs- punkt	Entmischungs- punkt	
	0	C	
0.000	10-0		
0,000			
0,012	61,7		
0,023	-54,3		
0,040	48,0	40,8	
0,066	- 48,1	-25,5	
0,079	í —-	— 19,4	
0,117		- 8,0	
0,190		5,6	
0,294		14,2	
0,392		17,1	
0,513		18,2	
0,585		17,8	
0,679		16,2	
0,779		9,8	
0,849		- 0.5	
0,916	47,9	-20,9	
0,938	48.0	31,4	
0,959		- 44,8	
0,980	-47.8		
1,000	-46.9		
.,	20,0		

Zusammenfassung.

1. Die Mischungswärmen der Systeme Chlorex—n-Oktan und Chlorex—i-Oktan (2,2,4-Trimethylpentan) sind bei 25°C sehr stark endotherm (495, bzw. 440 cal/Mol Mischung bei $x_{Chl} = 0,300$) und besitzen einen negativen Temperaturkoeffizienten.

2. Das System Chlorex—n-Oktan zeigt bei 20° C — das heißt bei eben noch vollständiger gegenseitiger Löslichkeit — eine kleine Volumsdilatation, die sich mit steigender Temperatur (35°) vorerst nur wenig ändert, dann aber (50°) deutlich ausgeprägt ist. Das System Chlorex i-Oktan weist bei 20° C — also noch sehr nahe der KLT — eine geringfügige Volumskontraktion auf, die bei 35° noch ebenso gering ist, dann aber (50°) bemerkenswert groß wird. 3. Das Dipolmoment des *Chlorex*-Einzelmoleküls errechnet sich bei 20° C zu 2,47 (*Debye*) in n-Oktan und 2,60 (*Debye*) in i-Oktan.

4. Die Zustandsdiagramme beider Systeme sind sehr ähnlich und zeigen tiefe, fast über den gesamten Konzentrationsbereich laufende Zonen beschränkter Mischbarkeit. Die KLT des *Chlorex*—n-Oktansystems liegt bei + 19,7° C, die des i-Oktansystems bei + 18,2° C. Für die Schmelzwärme von *Chlorex* finden wir als Mittelwert 2070 cal/Mol.

Herrn Prof. L. Ebert haben wir für wertvolle Ratschläge zur Abfassung dieser Arbeit zu danken.

Formaldehyd als Produkt der kalkalkalischen Spaltung von Ligninsulfosäure.

(Kurze Mitteilung.)

Von

Th. Kleinert.

Aus der Lenzinger Zellwolle- und Papierfabrik A.-G., Lenzing, O.-Ö.

(Eingelangt am 23. Juni 1949. Vorzulegen in der Sitzung am 13. Okt. 1949.)

In einer kürzlich erschienenen Arbeit berichtet $K. Kratzl,^1$ daß bei der alkalischen Hydrolyse von Ligninsulfosäure als Spaltprodukt Formaldehyd gefunden wurde, nachdem bereits in einer früheren Arbeit² von dem gleichen Autor als Hydrolysenprodukte Acetaldehyd und Vanillin nachgewiesen worden waren.

Im folgenden sollen in Kürze Beobachtungen mitgeteilt werden, die bei einer Nacharbeitung³ der Wärme-Druckfällung von Sulfitablaugen mittels Ätzkalk gemäß der altbekannten Arbeitsweise von Drewsen⁴ gemacht worden sind. Bei diesem Verfahren werden Sulfitablaugen mit überschüssigem Ätzkalk versetzt und einer Druckerhitzung auf Temperaturen über 100° C unterzogen. Die Ausfällung der Ligninsubstanzen erfolgt in Form unlöslicher Kalkverbindungen⁵ unter gleichzeitiger partieller Abspaltung von gebundener schwefeliger Säure, die sich dann als Calciummonosulfit in den Niederschlägen vorfindet. Bei

¹ K. Kratzl, Mh. Chem. 80, 314 (1949).

² K. Kratzl, Österr. Chemiker-Ztg. 49, 143 (1948); Mh. Chem. 78, 173 (1948).

³ Eine genaue Beschreibung der in den Jahren 1940 bis 1942 in Temperaturgebieten von 100 bis 350° C durchgeführten Versuche wird in einer späteren Mitteilung erfolgen.

⁴ V. B. Drewsen, D. R. P. 67889 (1891).

⁵ Siehe auch Schwz. P. 237399 und Österr. P. 162602.